摘要

对于两个不相同的正整数m和n,如果满足σ(m)=σ(n)=m n,则称之为一对亲和数,这里σ(n)=∑d|nd.本文给出了f(x,y)=x2x y2x(x>y≥1,(x,y)=1)不与任何正整数构成亲和数对的结论,这里x,y具有不同的奇偶性,即,关于z的方程σ(f,(x,y))=σ(z)=f(x,y) z不存在正整数解.