摘要
针对供应链金融领域中小企业融资的信用风险控制问题,提出了一种在Bagging算法框架下结合贝叶斯优化和XGBoost算法的集成学习模型BO-XGBoost-Bagging(BXB)。首先,基于XGBoost特征重要度进行特征筛选,建立供应链金融信用评价指标体系。其次,通过贝叶斯优化获得XGBoost的最优超参数,并结合Bagging算法得到集成模型BXB。最后,在中小企业数据集上进行预测,通过实证研究验证信用评价模型的有效性。实证结果表明,BXB模型相比其他模型具有更好的预测效果,能够更加准确、全面地对中小企业的信用风险进行评估,更好地区分风险企业和正常企业,最大程度减少违约损失,在供应链金融信用评价方面有着较高的应用价值。
- 单位