摘要
随着深度伪造技术的发展,生成的图片视频质量越来越逼真,给社会带来了巨大的安全风险。针对现有的检测方法参数量大、网络较深、模型结构复杂等情况,首先对取证领域的经典检测模型XceptionNet进行优化,提出一种轻量化的取证模型Xcep_Block8,在减少模型参数量的同时,仍保持较高的检测精度。其次,针对类别不均衡问题,通过提高较少类别样本的采样概率,较好地解决了正负样本不均的情况。最后使用混合式数据增强方法 CutMix增强样本之间的线性表达。实验结果表明,所提模型的测试结果较基线结果提升约1.01个百分点,同时在参数量方面较其他方法也有一定优势。
- 单位