摘要
【目的】针对类球型水果表面亮度分布不均现象,传统算法难以有效直接分割水果表面缺陷区域问题,提出一种基于区域亮度自适应校正的脐橙表面缺陷检测算法。【方法】选择区域经济价值较高的纽荷尔脐橙为研究对象,对其采集原始可见光RGB图像。试验中发现R-B融合分量图像灰度呈明显双峰分布,故根据直方图信息利用单阈值法(分割阈值T1=60)去除图像背景,获得R-B目标图像;基于本文提出的一种区域亮度自适应校正算法对脐橙表面缺陷进行检测,首先设定目标图像邻域窗口大小为w×w(邻域窗口大小w=13),通过对其窗口大小内较亮像素点的集合提取脐橙表面亮度信息,然后基于此表面亮度信息对去除背景的R-B目标图像进行均一化校正,经亮度校正后的图像发现其表面缺陷区域与正常组织区域灰度对比度大,宜采用单阈值法(分割阈值T=194)直接对亮度校正后的脐橙图像进行表面缺陷分割提取;最后对表面缺陷分割后的二值化图像进行面积滤波以去除杂散点及噪声。【结果】采用双峰法可在有效去除图像背景的同时完好保留目标脐橙表面信息;基于区域亮度自适应校正算法对溃疡病果、蓟马虫果、介壳虫果、虫伤果、黑星病果、风伤果、炭疽病果、裂伤果等8种常见脐橙表面缺陷果,共计356幅样本图像进行亮度校正,采用单阈值法对亮度校正后的图像进行表面缺陷分割,其分割率高,整体缺陷准确识别率达到了95.8%,平均处理每幅图像耗时0.29 s。与直方图均衡化算法、基于Retinex理论算法以及基于照度-反射理论算法得到的亮度校正图像相比,本文算法亮度校正效果最优且算法简单、缺陷识别率高、计算速度快,其运算速度分别减少了0.27、0.14和1.45 s,缺陷识别率提高了2.6%—8.2%。【结论】基于区域亮度自适应校正的脐橙表面缺陷检测算法有效解决了脐橙类水果表面亮度分布不均导致的表面缺陷难分割问题,为脐橙在线精确分级提供了技术支持,也为其他类球型水果表面缺陷快速检测提供了一种新方法。
- 单位