摘要

为了使可见光与红外融合图像能更好的表达目标信息,联合非下采样Shearlet变换与剥离策略,对其进行融合。首先,借助非下采样Shearlet变换,获取可见光与红外图像的高、低频成分。然后,通过Otsu阈值分割方法来构建剥离策略,将红外图像中的目标层与其背景层进行剥离,并以目标层为基础,利用图像的区域能量特征,对可见光图像与红外图像背景层的低频系数进行加权计算,并将结果与红外图像的目标层结合,以得到富含目标内容和背景内容的融合低频系数。引入区域方差函数,对图像的细节特征进行测算,通过构造方差加权因子,得到富含细节特征的融合高频系数。最后,对两个融合系数实施非下采样Shearlet逆变换,从而输出融合图像。实验结果显示,本算法融合的图像,比现有融合算法融合的图像更具优良的目标及细节表达能力,可用于获取高质量的可见光与红外融合图像。