摘要
针对"蛟龙号"深海载人潜水器多推进器系统的故障检测与快速定位难题,将基于信度分配的模糊小脑神经网络(credit assignment-based fuzzy cerebellar model articulation controller, FCA–CMAC)应用于主元分析模型,提出一种基于主元分析(principal component analysis, PCA)的深海载人潜水器推进器系统故障诊断模型.首先,应用推进器系统正常运行的历史电流样本数据,由主元分析模型得到各推进器的电流预测值.其次,计算出故障检测统计量均方预测误差(squared prediction error, SPE),根据SPE值是否跳变,判断推进器系统有无故障发生.通过分别重构各推进器电流信号的SPE值对故障推进器进行定位和隔离.最后,通过对实际海试数据进行仿真处理说明了该算法的可行性,并通过与多层前馈神经网络(back propagation, BP)和常规小脑神经网络(cerebellar model articulation control-ler, CMAC)神经网络进行比较,说明基于FCA–CMAC神经网络的主元分析模型的优越性.
- 单位