将含有随机分布多种夹杂相复合材料的二维弹性力学问题归结为复连通区域的边界积分方程,进而转化成矩阵方程进行求解和分析.根据同类夹杂相外在边界上的面力与位移之间关系矩阵完全相同的特点,使得最后的矩阵方程阶数得到大规模减少,这正是此处提出改进的边界元方法的主要思路.数值算例表明,对于此类问题,与常规的边界元分域解法相比更加有效.以该方法为基础,可以详细给出纤维增强复合材料二维条件下的宏观等效力学性质.