针对已有协同过滤推荐技术中评分矩阵极度稀疏问题,提出了一种基于低秩矩阵填充技术的推荐算法。该算法从贝叶斯框架出发,提出了能够解决低秩矩阵问题的分层高斯先验模型,并将广义近似消息传递算法嵌入到贝叶斯框架,规避了贝叶斯学习过程中烦琐的矩阵逆运算,提升了算法运算速度,同时在广义近似消息传递算法中施加阻尼运算以促进收敛。在开放数据集上的实验结果表明,所提出的算法与相关的矩阵填充推荐算法相比,有效地提高了推荐准确度。