基于ARIMA和BP神经网络的猪舍氨气浓度预测

作者:刘春红; 杨亮; 邓河; 郭昱辰; 李道亮; 段青玲
来源:中国环境科学, 2019, (06): 2320-2327.
DOI:10.19674/j.cnki.issn1000-6923.2019.0276

摘要

为了从源头减少生猪养殖过程中的氨气排放,降低猪舍氨气浓度,提出了基于ARIMA-BP神经网络的猪舍氨气浓度组合预测方法,分别从最优权重和残差优化角度对基于ARIMA-BP神经网络的组合预测方法进行了对比研究.将该预测方法应用于江苏省宜兴市某养猪场的氨气浓度预测中,预测结果表明:基于ARIMA-BP神经网络残差优化组合预测方法的预测精度最高,与BP神经网络、ARIMA预测方法和基于ARIMA-BP神经网络最优权重组合预测方法对比分析,评价指标MAE、MAPE和RMSE分别为0.0319、0.1580%和0.0365.本文提出的氨气预测方法可以为猪舍环境精准化调控管理提供科学依据以减小猪舍氨气排放...

全文