摘要
多标签分类主要解决实例数据对应多个标签问题,现有多标签方法大多利用所有特征组成的相同数据表示来区分所有标签,由于每个标签自身特点不同,统一的特征不能完全区分标签,给模型训练带来负面作用和时间成本增加,如何利用对每个标签而言最具有辨别力的特征来提高模型分类性能成为一种难题,此外现实中类不平衡问题同样会导致多标签学习模型的性能下降。基于此,提出一种类不平衡的公共和标签特定特征多标签分类方法。首先,找到种子实例的最近邻居,然后通过插值技术得到合成实例的特征来解决类不平衡问题;其次,为了找出对每个标签最具代表性的特征,引入l1,l2,1正则化约束系数矩阵提取标签的特定特征和公共特征;最后,使用标签相关性实现关联标签的模型输出相似,实例相关性保证关联特征共享对应标签分布信息提高分类性能。实验表明所提方法与其他多标签分类方法相比获得了更好的分类精度。
- 单位