摘要
利用卷积神经网络技术对单幅低分辨率图像进行超分辨率重建。利用五层卷积的网络模型用以特征提取和端到端的低分辨率与高分辨率之间的映射;使用自适应矩估计优化算法加快网络的收敛速度;将ReLU激活函数修改为Leaky ReLU激活函数,解决遇到导数为0时的导致神经元不能进行参数更新的问题,同时调整卷积核大小以及数目。提出算法在Set5和Set14数据集上进行实验验证,并与Bicubic、ScSR、SRNEANR、SRCNN等主流方法进行对比,实验结果表明,该方法在重建精度和收敛速度等方面都有很好的效果。
- 单位