摘要

针对传统卷积神经网络U-Net对早期肝脏肿瘤的分割精度低的问题,在U-Net的基础上提出了基于深度Q学习和可变形卷积U-Net的肝脏肿瘤分割方法。首先使用深度Q学习对图像进行肿瘤目标定位,然后对目标肿瘤区域使用可变形卷积的U-Net进行分割,最后实现了粗剪裁到细分割的两段式学习框架。实验结果表明,利用该方法在肝脏肿瘤数据集上测试,其分割结果的Dice系数能够达到68%,较传统的卷积神经网络U-Net精度提升了6.89个百分点。