摘要
提出了一种新的深度残差对冲网络模型。首先,该模型借助Inception堆叠思想提出了堆叠卷积对冲结构块以加快网络收敛速度;然后,设计了新的恒等映射块,实现了输入层与中间各层的残差连接;最后,在全连接层引入Squash函数,防止损失梯度的发散。将提出的深度残差对冲网络应用于滚动轴承故障诊断,在预处理中将滚动轴承的振动加速度时域信号通过快速傅里叶变换得到的频谱图直接作为网络输入,从而简化了数据的预处理工作。利用两组实际的滚动轴承故障数据进行方法验证,并与18层深度残差网络(Resnet18)、卷积神经网络(CNN)等其他方法进行了对比验证。结果表明所提深度残差对冲网络模型的测试精度较其他模型高约2%,且训练时间能缩短1/3,充分表明本文方法具有很强的鲁棒性和收敛速度快等优点。
- 单位