摘要
在城市道路施工场景下应用短时交通量预测对提高施工区域交通效率及安全水平至关重要。考虑到施工场景下短时交通量历史样本量小且样本呈现非线性的特点,引入灰色预测模型,构建施工场景下的灰色小波神经网络短时交通量预测模型。以行宫西大街由西向东断面的交通量数据为例,分别基于小波神经网络短时交通量预测模型、灰色小波神经网络短时交通量预测模型,利用Matlab进行训练。结果显示,灰色小波神经网络短时交通量预测结果的平均绝对误差、平均相对误差和均方误差相较于小波神经网络短时交通量预测模型,分别降低了74.14%、75.21%和92.70%,该模型对城市道路施工场景下的短时交通量预测精确度更高。
-
单位交通运输部管理干部学院