近年来,随着智能电表的推广及用电信息采集系统建设的逐步完善,电网公司积累了海量用户用电数据,为大数据技术在电力领域的应用提供了基础。文章基于数据挖掘思想,针对行业分类及用户特征,对海量的多元计量数据进行分析,从中挖掘出窃电用户的关联性多维度特征参量,基于神经网络构建数据驱动下的窃电预测模型。实验表明该方法具有较高的工程应用价值,为窃电预测提供了一种有效的方法和途径。