摘要
针对低分辨雷达人工目标识别效率较低的问题,提出了基于深度迁移学习的雷达自动目标识别方法。该方法利用雷达回波序列轮廓像构建空中目标数据集,使用深度卷积神经网络自动提取回波数据中的深层特征,并对雷达目标进行分类识别。为了解决深度学习对样本量的巨大需求,在分类模型训练时,引入迁移学习思想,将经ImageNet数据集预训练过的初始网络模型迁移到雷达目标识别任务中,再通过空中目标数据集对模型参数进行微调,实现小样本条件下对空中目标的粗分类。实测数据的结果表明:所提方法能够在小样本条件下较为准确地对空中目标的大小和架次进行分类识别,具有良好的识别性能。
-
单位中国人民解放军空军预警学院