摘要
针对传统步态识别算法因服饰携带物变换、视角等协变量因素变化导致的识别能力下降问题,提出了一种基于改进深度卷积神经网络的步态识别算法。该算法利用分层处理机制从步态数据中提取步态特征,能够降低常见变化和遮挡等情况对识别精度的影响,同时,算法根据实验确定了网络中每层特征图的最佳数量、特征图的最佳尺寸以及要用于步态识别的输入特征的类型,能够处理相对较小的数据集而无需使用任何增强或微调技术。CASIA-B步态数据库仿真实验表明,所提出的卷积神经网络覆盖了交叉视图步态识别和无主题的步态识别问题,能够克服与步态识别相关的协变量因素问题,具有更优的步态识别精度。
- 单位