一种基于一维卷积神经网络的旋转机械智能故障诊断方法

作者:安晶; 艾萍*; 徐森; 刘聪; 夏建生; 刘大琨
来源:南京大学学报(自然科学), 2019, 55(01): 133-142.
DOI:10.13232/j.cnki.jnju.2019.01.014

摘要

状态监测和故障诊断对于维护系统性能和保证运行安全具有重要意义.针对传统智能识别方法需要复杂的特征提取过程和大量的诊断经验等问题,结合振动信号自身的一维性的特点,提出一种基于一维卷积神经网络(1-Dimensional Convolutional Neural Network,1DCNN)的旋转机械智能故障诊断方法.首先将数据信号通过傅里叶变换转换成频域信号并进行预处理,然后训练卷积神经网络自动提取特征,最后通过Softmax回归进行分类.在基准数据集上的实验结果表明,1DCNN模型不仅能有效地从原始信号中进行多种工况、多种故障位置、多种故障程度的特征提取和诊断,而且具有很高的故障识别精度,获得了优于主流故障诊断方法的结果.

全文