摘要
目的针对计算机断层扫描(computed tomography, CT)图像的肺结节自动检测中灵敏度低及存在大量假阳性的问题,本文提出了一种基于非结节自动分类的二维卷积神经网络(convolutionalneural network, CNN),并用于肺结节检测中的假阳性减少。方法首先对CT图像进行预处理,通过对原始CT图像重采样和归一化,解决不同样本像素间隔不一致及图像对比度不统一问题;采用结节不同空间方向的二维切片信息采集进行正样本扩充,负样本无监督分类方法平衡正负样本数量;分别利用不同类别负样本与正样本训练二维卷积神经网络,获得多个用于降低假阳性的2D CNN肺结节检测模型,对LUNA16提供的假阳性减少数据集进行五折交叉验证,利用官方提供的评估程序对模型进行评估。结果通过与直接使用单个2D CNN进行分类的模型比较,对非结节分类后训练多个模型的分类结果较佳,最终竞争性指标(competition performance metric,CPM)竞争性得分0.849。结论基于非结节自动分类的2D CNN模型可以有效地对假阳性肺结节进行剔除,相较于其他2D CNN具有竞争力,可为肺癌早期筛查提供帮助。
- 单位