摘要
为破除XGBoost模型的黑盒特性,增强模型的说服性,提出一种基于SHAP的可解释性航班到港延误时长预测模型。首先,对航班历史数据、天气数据进行融合,在融合数据的基础上进行异常值处理,并利用递归特征消除方法进行特征选择;其次,构建航班延误时长预测模型,利用遗传算法进行参数调优,并与目前常用的模型进行对比;最后,在航班延误时长预测的基础上结合SHAP模型,从总体特征和特征间的相互关系2个角度分析特征的重要程度。实验结果表明,经过遗传算法调优的XGBoost模型预测精度更高,其中MAE降低了8.94%,RMSE降低了19.85%,MAPE降低了6.15%,且其模型精度更高。因此,SHAP模型破除了XGBoost模型的黑盒特性,增强了模型的可解释性,可为降低航班延误时长提供技术支持。
- 单位