摘要
基于内容的图像检索的关键在于对图像进行特征提取和对特征进行多比特量化编码。近年来,基于内容的图像检索使用低级可视化特征对图像进行描述,存在"语义鸿沟"问题;其次,传统量化编码使用随机生成的投影矩阵,该矩阵与特征数据无关,因此不能保证量化的精确度。针对目前存在的这些问题,本文结合深度学习思想与迭代量化思想,提出基于卷积神经网络VGG16和迭代量化(Iterative Quantization, ITQ)的图像检索方法。使用在公开数据集上预训练VGG16网络模型,提取基于深度学习的图像特征;使用ITQ方法对哈希哈函数进行训练,不断逼近特征与设定比特数的哈希码之间的量化误差最小值,实现量化误差的最小化;最后使用获得的哈希码进行图像检索。本文使用查全率、查准率和平均精度均值作为检索效果的评价指标,在Caltech256图像库上进行测试。实验结果表明,本文提出的算法在检索优于其他主流图像检索算法。
- 单位