摘要
由于大坝位移时间序列数据受各种复杂因素的影响,具有非平稳和非线性等特征,因此,利用传统、单一的时间序列预测模型较难准确地描述大坝位移变形的复杂规律。综合考虑大坝位移时间序列非线性和线性特征,本文提出了一种SVM和ARIMA相结合的时间序列预测模型。将大坝变形的时间序列分为非线性部分和线性部分。针对非线性部分,利用SVM进行滚动预测,并与NAR动态神经网络进行对比,试验表明SVM处理非线性问题具有相对的优势;针对线性部分,通过ARIMA模型对其进行单步滚动预测,综合两项预测结果得到组合模型的预测值。结合大坝实测资料对组合模型进行检验,试验结果表明,SVM-ARIMA组合模型的预测精度高,能更好地描述大坝位移的变化趋势,具有一定的实用价值。
- 单位