摘要

大数据下网络资源信息丢失的优化识别,能够保证网络稳定正常运行。对丢失资源信息的识别,需要得到浓缩点组成的新数据碎片样本,由此进行训练获得决策函数,完成网络资源丢失信息的识别。传统方法获得网络资源信息组合特征向量,对信息组合特征向量进行丢失识别,但忽略了获取决策函数,导致识别精度偏低。提出基于模糊C均值聚类的大数据下网络资源信息丢失识别算法,采集大数据下不同类型的网络资源信息样本,对不同类型的网络资源信息样本进行特征提取,通过模糊C均值聚类理论对碎片样本进行聚类分析,利用信息浓缩准则对碎片样本聚类中心进行处理,得到浓缩点组成的新数据碎片样本,并使用新数据碎片样本进行训练获得决策函数,以此为依据完成网络资源信息丢失识别。实验结果表明,所提算法能够有效提高网络资源信息识别精度,实用性较强。

  • 单位
    四川大学锦城学院