摘要

随着人工智能的应用对计算资源的要求越来越高,移动设备由于计算能力和存储能量有限而无法处理这类有实时性需求的计算密集型应用。移动边缘计算(Mobile Edge Computing,MEC)可以在无线网络边缘提供计算卸载服务,达到缩短时延和节约能源的目的。针对多用户依赖任务卸载问题,在综合考虑时延与能耗的基础上建立用户依赖任务模型,提出了基于延迟接受的多用户任务卸载策略(Multi-User Task Offloading Based on Delayed Acceptance,MUTODA),用于解决时延约束下最小化能耗的任务卸载问题。该策略通过非支配的单用户最优卸载策略和解决资源竞争的调整策略两个步骤的不断迭代,来解决多用户任务卸载问题。实验结果表明,相比基准策略和启发式策略,基于延迟接受的多用户任务卸载策略能够提高约8%的用户满意度,节约30%~50%的移动终端能耗。