摘要
传统的神经协同过滤算法在隐式反馈数据集上对用户和项目建模,由于隐式反馈数据天然带有很强的噪音,这给模型的学习带来了挑战。为了缓解该问题,文中提出了一种基于三通道的神经协同过滤算法,该方法使用自编码器去挖掘用户和项目的特征向量,然后结合用户和项目的辅助信息一起通过多层感知机去学习特征向量不同维度之间的高阶交互关系,并将其与传统的神经协同过滤算法融合,以此来提高模型的泛化能力和命中率。此外在隐式反馈数据集上进行负采样不易且采样结果会极大程度影响模型的表现,文中采用一种基于传统矩阵分解的概率负采样方法克服这个问题,提高了模型的鲁棒性。本文在公开数据集MovieLens上进行了大量实验,实验结果表明基于本文提出的算法比其他先进算法有更优的表现。
- 单位