摘要

文本图像识别是计算机视觉领域一项重要任务,而其中的中文识别因种类繁多、结构复杂以及类间相近等特点很具挑战性.为改善这一问题,使用文本行端到端的识别模型.首次提出利用密集卷积神经网络(DenseNet)提取文本图像底层特征,同时避免手工设计、统计图像特征的繁琐;将整行图像特征直接送入双向长短时记忆模型(BLSTM)进行局部相关性分析,减少字符定位分割这一步骤;最后采用时域连接模型(CTC)解码获得识别的文本信息.实验表明所提出的模型可以高效的进行图像文本行的识别,并对图像的多种形变具有较好的鲁棒性.

全文