摘要

高血压是一种常见的慢性病,若能早发现、早采取措施可降低其引发并发症的风险。尽管高血压的产生与发展与诸多因素有关,但饮食被公认为影响高血压的主要因素之一。机器学习模型可以对疾病进行有效预测,并提供辅助治疗。笔者提出一种基于XGBoost的通过分析营养成分预测高血压的方案,该方案由数据转换、特征选择、数据清理与标准化、模型搭建、分类与评估5部分组成。实验结果表明,XGBoost在高血压预测中获得了0.859的F1分数且准确率超过85%,高于随机森林、支持向量机与人工神经网络。此外通过分析不同营养成分对高血压预测的影响因素,获得了影响高血压的前10个营养特征,大部分与医学结论相同,验证了模型的有效性。