摘要
【目的】研究一种基于卷积神经网络的被害棉叶症状识别技术,提高被害棉叶的识别准确率。【方法】基于caffe深度学习框架,在CaffeNet网络结构基础上增加一层全连接层(记为CaffeNet+1),并结合迁移学习方法对网络进行训练。采集健康、红叶茎枯、红蜘蛛、枯萎、黄萎、双斑萤叶甲、蚜虫、褐斑棉叶图像各975张作为样本集。随机选取集中80%的图像样本作为训练集,剩余20%作为测试集。【结果】迁移学习方式下学习率取0.005时的CaffeNet+1模型最优,在测试集上其识别准确率可达98.9%。【结论】在与全新学习模式下的CaffeNet模型相比,该方法可加速网络模型收敛,且具有更高的识别准确率,该技术方法在准确识别被害棉叶症状图像方面具有重要的应用价值。
-
单位农业部; 石河子大学