摘要

针对核电厂水泵共性的异常振动、转子部件摩擦与磨损等故障模式,利用水泵最容易获取的泵壳加速度信号的频域数据为输入,提出了一种结合卷积神经网络和注意力网络的频域数据注意力机制方法,并建立了核电厂水泵故障模式识别模型。研究结果表明:相对于传统方法,利用频域数据作为输入、基于频域数据注意力网络算法建立的水泵故障模式识别模型输入的数据长度更短,能够有效提升模型训练的效率,该故障模式识别模型在测试集上的故障模式识别准确率达到100%,优于其他基于深度学习算法建立的故障诊断模型,证明了本文提出方法的优势。