摘要

针对汽车发动机故障率高且种类多,故障征兆与故障之间存在多对多的复杂耦联关系,故障溯源难度大、准确率低等问题,提出了融合知识图谱和多元神经网络的发动机故障智能预测方法。首先,将发动机运行状态、故障现象、故障原因和维修记录作为输入信息,通过知识抽取、消歧和加工形成为可表示、可推理的结构化知识网络,并进行特征向量转换;其次,建立了包含故障记录嵌入层、卷积层、GRU门控层和注意力机制的多元神经网络通路,通过特征向量训练形成了发动机故障预测模型,实现了发动机定性故障现象到定量故障推理,再到定性故障预测输出的映射变换;最后,通过实际维修案例验证了所提KG-CNN-GRU-Att方法的可行性和有效性。为发动机故障的高效准确预测提供了一种新的思路和手段。

全文