摘要
针对传统研究中APP能耗漏洞模型存在尾部能耗与应用对象限制的问题,构建基于系统调用的能耗漏洞模型。首先使用集合交叉递归特征消除法选择影响每个类别APP能耗的重要系统调用作为特征,提高特征细化粒度。然后为每个类别APP构建多个回归模型,通过比较不同模型的平均绝对误差与决定系数,选择线性核支持向量机回归作为分类APP的能耗模型。最后基于测试集比较集合交叉递归特征消除法与交叉递归特征消除法所构模型的平均绝对误差,结果表明集合交叉递归特征消除法所构模型精度最多提高4.4%,同时基于测试集比较分类模型与未分类模型的平均绝对误差,结果表明分类模型精度最多提高6.7%,并且分类模型能准确检测出APP历史版本的能耗漏洞。
- 单位