摘要
针对传统智能优化算法处理不确定复杂环境下多UAV集结航路规划存在计算量大、耗时长的问题,提出了一种基于互惠速度障碍法(reciprocal velocity obstacle,RVO)的深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法。引入互惠速度障碍法指导UAV对不确定环境内障碍进行避碰,有效提高了目标actor网络的收敛速度,增强了算法的学习效率。设计了一种基于综合代价的奖励函数,将多UAV航路规划中的多目标优化问题转化为DDPG算法的奖励函数设计问题,该设计有效解决了传统DDPG算法易产生局部最优解的问题。基于Pycharm软件平台通过仿真验证了该算法的性能,并与多种算法进行对比。仿真实验表明,RVO-DDPG算法具有更快的决策速度和更好的实用性。