摘要
针对传统大规模优化算法维数过高、过度稀疏、难以平衡等问题,文中提出基于动态自适应的双档案大规模稀疏优化算法,平衡维数和稀疏性对算法的影响,提高算法在解决大规模优化问题上的多样性和收敛性.首先,改变种群分数生成策略,加入自适应参数和惯性权重,增加分数的动态性,改善种群的多样性,使搜索不易陷入局部最优.然后,改变算法的环境选择策略,引入角度截断的思想,有效生成子代.同时引入双档案,分开真实决策变量和二进制决策变量,减少算法的运行时间.在大规模优化问题、稀疏优化问题及实际应用上的测试表明,文中算法保持原有的稀疏性质,同时稳定提升多样性和收敛性,具有较强的竞争性.
- 单位