基于WPD-CNN二维时频图像的滚动轴承故障诊断

作者:陈里里; 付志超*; 凌静; 董绍江
来源:组合机床与自动化加工技术, 2021, (03): 57-65.
DOI:10.13462/j.cnki.mmtamt.2021.03.013

摘要

滚动轴承故障诊断是现代工业发展中的重要技术。针对滚动轴承信号特征提取与智能诊断问题,提出了一种基于WPD-CNN二维时频图像的滚动轴承故障诊断方法。首先通过小波包分解(WPD)将信号转换为二维时频图像;其次将时频图像输入VGG19卷积神经网络(CNN)模型自动提取有效特征,并输入Softmax分类器进行训练;最后使用训练好的分类器完成滚动轴承故障诊断任务。实验结果表明,10类故障数据的识别准确率均在98.3%左右,高于其他深度学习和传统方法,因此所提出的故障诊断模型能有效地进行滚动轴承复杂信号的特征提取以及分类任务。

全文