摘要
精确的风速预测对于规模化风电并网及系统运行具有重大意义。提出了一种基于快速相关性约简优化K-mediods聚类的双层长短时记忆网络短期风速预测模型。首先,计算各风速序列及其属性序约简优化K-mediods聚类的双层长短时记忆网络短期风速预测模型。即计算各风速序列及其属性序列的相关程度信息熵,运用快速相关性滤波算法进行属性约简,以降低属性维度及删除冗余属性。然后,采用改进K-mediods对约简后的风速数据进行聚类,得到风速关联属性优化序列,保证类内信息准确全面,并利用双层长短时记忆网络挖掘深层特征及短期预测。最后,通过对实际风场风速进行预测,并与实测数据对比,验证了预测模型的准确性及有效性。结果表明,所提方法在风速属性数据的优选方面具有较大优势,通过保留关联紧密的属性信息提高了预测的精度。
-
单位东北电力大学; 松花江水力发电有限公司