摘要
【背景】β-葡萄糖苷酶(EC 3.2.1.21,β-glucosidase),是纤维素分解酶系中的重要组成部分,目前工业上应用的β-葡萄糖苷酶多数来源于植物和真菌,来源于细菌的较少,且应用中还存在酶活力偏低、热稳定性差、反应条件适用范围窄、酶活力易受产物反馈抑制等问题,增加了经济成本。嗜热微生物具有特殊的遗传信息资源,极有可能从中挖掘到酶学性质优良的新型β-葡萄糖苷酶,从而解决工业难题。【目的】从嗜热淀粉芽孢杆菌(Bacillus thermoamylovorans)基因组中挖掘新型β-葡萄糖苷酶基因,通过基因重组、异源表达和蛋白纯化技术制备新型β-葡萄糖苷酶,并探究其酶学性质,为新型β-葡萄糖苷酶在纤维素水解等领域的应用奠定基础。【方法】人工合成新型β-葡萄糖苷酶基因bgl52,构建重组表达质粒pET22b-bgl52,并用电脉冲法转化到大肠杆菌BL21(DE3)中实现可溶性表达,利用Ni-NTA亲和层析纯化得到高纯度的β-葡萄糖苷酶Bgl52。【结果】实现重组表达质粒pET22b-bgl52在大肠杆菌BL21(DE3)中的可溶性表达,并获得β-葡萄糖苷酶Bgl52纯蛋白,蛋白分子量为52 kD,在70°C和pH 6.5条件下表现出最佳活性;以p-nitrophenyl-β-D-glucopyranoside (p NPG)为底物时的比酶活为223.7±5.3 U/mg;Km为9.3±1.2 mmol/L,Vmax为270.3±4.3μmol/(min·mg);Bgl52偏好性水解β-1,4糖苷键的底物;Fe2+和Mg2+对酶的激活作用明显,Co2+、Cu2+和SDS可抑制其活性;Bgl52是少有的几种葡萄糖和木糖激活型β-葡萄糖苷酶之一,当反应体系中外源添加0.2 mol/L葡萄糖时可提升活力至2.84倍,外源添加0.4 mol/L木糖时可提升活力至3.24倍,同时Bgl52在生理条件下基本不受产物的反馈抑制。【结论】利用嗜热微生物基因组中蕴藏的遗传信息资源,通过现代生物技术方法,可以从中挖掘到酶学性质优良的β-葡萄糖苷酶,为其在纤维素降解等工业领域的应用奠定基础。
- 单位