摘要
针对遥感图像检索中特征难以准确表达遥感图像内容的问题,该文提出了一种面向遥感图像检索的上下文分段式多层感知机方法。该方法将卷积神经网络(CNN)中的全连接层替换为分段式多层感知机,使用分段和重建操作,不仅减少了参数数量,还提高了网络获取全局上下文信息的能力。为了进一步强化特征,该文还提出了一种跳跃融合模块,引入注意力机制和跳跃连接,并将其与上下文分段式多层感知机相结合,分别在空间和通道上增强局部信息,从而提高了特征的表达能力。在UC-Merced、AID和NWPU-RESISC45数据集上进行实验,检索的平均准确率均值分别达到0.9945、0.9865和0.9318,平均归一化修改检索等级分别为0.0042、0.0356和0.0521。结果表明,本文提出的方案不仅能增强CNN获取全局信息的能力,在降低参数的同时还能减少特征的冗余性,从而提高遥感图像的检索性能。
-
单位南昌航空大学; 江西省图像处理与模式识别重点实验室