摘要

针对当前许多算法在非约束条件下特征判别能力不强、人脸识别性能不佳等问题,提出一种基于深度学习的改进人脸识别算法,通过训练多任务级联卷积神经网络,完成非约束图像的人脸检测和人脸归一化,提高训练图像的人脸信息,减少对模型的干扰。同时使用Softmax损失与中心损失联合监督训练模型,优化类内聚合、类间分散。实验结果表明,该算法提高了模型的特征判别能力,在LFW标准测试集上达到了较高的识别率。