摘要
超声检测缺陷是一种主流的缺陷识别手段,二维卷积神经网络一直是该领域的主要技术,一般从二维C扫、D扫等图像中提取属性特征来进行识别分类,这些研究主要采用二维卷积层,会产生较大的资源消耗。在所有类型的缺陷识别方法中,超声回波信号分析是最主要和有用的工具之一,本研究从原始时域超声信号中提取特征,首先使用来自实验室的JPR-600C空气耦合超声波无损检测系统采集数据;然后通过使用不同的超参数进行实验、t-sne可视化等手段构建并优化一维CNN网络模型;最后实现超声信号缺陷识别分类。实验结果表明,所提出的CNN模型的性能令人满意,缺陷识别准确率为97.57%,高于其他机器学习方法,为实现缺陷识别自动化的需要提供辅助。
- 单位