摘要
针对通信辐射源个体识别问题,提出了一种基于多通道变换投影、集成深度学习和生成对抗网络的融合分类方法。首先,通过对原始信号进行多种变换得到三维特征图像,据此构建信号的时频域投影以构建特征数据集,并使用生成对抗网络对数据集进行扩充。然后,设计了一种基于多特征融合的双阶段识别分类方法,利用神经网络初级分类器分别对3类特征数据集进行学习,得到初始分类结果。最后,通过叠加融合学习初始分类结果,得到最终的分类结果。实测数据分析结果证明,所提方法相比基于单一特征提取方法和经典多特征提取方法有更高的准确率,使用室外典型场景多径衰落信道模型对辐射源信号进行了处理,所提模型仍可进行有效识别,能够适用于复杂无线信道环境的应用。
- 单位