摘要

随着水环境质量监测技术的高速发展,水环境质量数据的种类、数量均都呈现爆炸式增长。原位监测与遥感监测是水环境监测的重要数据来源,如何快速高效地理解海量的监测数据是人工智能技术在生态环境研究领域的热点。因此,以三峡库区境内的国家良好水体——长寿湖为例,研究改进WRCNN卷积神经网络算法模型直接对遥感影像中的水环境数据进行特征提取,结合原位在线监测数据对遥感影像数据进行标注,增加CNN网络的宽度,提高遥感数据的水环境特征提取的能力,消除函数选择的不确定性,减少参数确定带来的计算步骤和抑制过拟合的影响,实现对大尺度水环境遥感特征的利用。结果表明,改进WRCNN卷积神经网络算法模型能有效识别长寿湖富营养化表征指标叶绿素a的浓度,为库区水体富营养化监测提供高效手段。