摘要
摩擦接触问题是计算力学领域最具挑战性的问题之一,接触系统的泛函具有非线性、非光滑的特点,导致接触算法的收敛性与精确性难以保证.因此将比例边界等几何分析(scaled boundary isogeometric analysis,SBIGA)与B可微方程组(B differential equation,BDE)相结合,提出了求解二维摩擦接触问题的比例边界等几何B可微方程组方法.在比例边界等几何坐标变换的基础上,通过虚功原理推导了关于边界控制点变量的接触平衡方程,表示成B可微方程组形式的接触条件可被严格满足,求解B可微方程组的算法的收敛性有理论保证.此比例边界等几何B可微方程组方法 (SBIGA-BDE)只需在接触体边界进行等几何离散,使问题降低一维,能精确描述接触边界,并可通过节点插入算法进行真实接触区域的识别.此外,由于几何建模和数值分析使用相同的基函数,节约了划分网格的时间.以赫兹接触问题和悬臂梁摩擦接触问题为例,通过与解析解及数值计算软件ANSYS计算结果进行对比,验证了该方法求解二维摩擦接触问题的有效性及高精度等特点.
- 单位