摘要

本发明提供了一种多模态情绪压力识别方法、装置、计算机设备及存储介质,该方法包括:获取多模态数据并进行预处理,得到训练样本集;其中,所述多模态数据包括人脸视频图像数据和光电容积脉搏波数据;利用注意力卷积神经网络、门控循环单元和全连接层,构建深度学习模型;利用训练样本集对深度学习模型进行训练,直至深度学习模型收敛;将待识别样本输入至训练好的深度学习模型,得到情绪压力的识别结果。本发明选取的多模态数据在表征情绪压力时存在内在关联,并通过深度学习模型充分挖掘多模态数据中的空间信息和时间信息并将其融合,使得深度学习模型更关注数据中最能表征情绪压力的部分,从而提高情绪压力识别的准确率。