摘要
本论文提出了一种能快速、精准用于人脸检测的特征即分开Haar特征(Separate Haar,简称Sep-Haar).本文研究过程中有3个关键贡献,第一是提出"分开Haar特征",即在Haar特征矩形之间添加了一个不关心的区域,可通过这个算法得到一些更有效的特征.第二是为这个不关心区域选择最好宽度的算法,这个算法用于减少学习特征的总数量,以减少内存的使用.第三是同样通过Adaboost算法应用,采用Sep-Haar特征能使用较少量的特征而得到最好的误报率.基于此研究结果,本文也提出了一种新分类器,每个阶段都有较小的误报率,实验结果表明使用该特征能够在减少检测时间情况下提高命中率.
-
单位中国航天员科研训练中心; 西安交通大学; 长虹美菱股份有限公司