基于视觉深度学习的机器人环境感知及自主避障

作者:吴亚辉; 刘春阳*; 谢赛宝; 班宇煊; 隋新; 黄艳; 张毅晖
来源:电子测量技术, 2021, 44(20): 99-106.
DOI:10.19651/j.cnki.emt.2107906

摘要

动态避障是机器人实现自主移动、安全行走的关键,面对复杂多变的室内场景,机器人需要能够及时检测到障碍物并动态规划安全的行走路线。利用RGB-D深度相机和IMU单元建立机器人环境感知系统,为机器人提供三维视觉和姿态角度等多模态信息。首先构建基于YOLOv4改进的目标检测模型,通过YOLOv4-M目标检测算法对彩色图像中的障碍物进行识别;将彩色图与深度图对齐,获取障碍物的尺寸信息以及机器人与障碍物的空间距离;根据机器人的实时姿态角度和对周围障碍物的识别信,建立基于改进的人工势场法避障决策模型,解决总势场计算陷入局部极小解的问题,动态规划行走路径,并将决策结果发送到机器人底盘控制单元,从而实现机器人在陌生场景中的自主运动。通过仿真分析及实物实验表明该方法可以实现机器人的自主避障。该方法的研究为机器人仅依赖视觉和惯导传感器就可以实现障碍物识别和自主移动避障提供了依据和参考。