摘要

对高维流式数据的在线组变量选择问题进行了研究,提出了带Group Lasso惩罚的逻辑斯蒂回归在线估计方法,并给出了GFTPRL (Group Follow the Proximally Regularized Leader)算法。通过给出GFTPRL算法的缺憾界,证明了算法在理论上是有效的。实验结果表明,对于稀疏模型GFTPRL算法的预测分类准确率明显优于其他主流稀疏在线算法。