摘要

针对手写签名样本数据量少、需要较高准确率的特点,设计了一种基于弹性网格的Gabor特征提取结合卷积神经网络的离线手写签名内容识别方法,利用仿射变换扩展数据集,基于弹性网格提取Gabor特征,训练带有BN层和Dropout层的卷积神经网络进行签名内容分类。提出了一种LBP特征提取算法结合深度置信网络的离线手写签名真伪识别方法,分块提取LBP直方图特征,进行特征合并,训练由三层受限玻尔兹曼机堆叠而成的深度置信网络进行签名真伪识别。实验结果表明,该方法可以有效提高离线手写签名分类和真伪识别的准确率,并减少了过拟合现象的发生。

全文