摘要
为探究青藏高原工程走廊带昆仑山地区冻融土导热系数基本特征,采用瞬态平面热源法对钻取的349组冻土试样和245组融土试样导热系数进行了测试,分析了五类土导热系数分布特征及天然含水率、干密度与导热系数的偏相关性,并以两者为变量因素建立了经验公式拟合、支持向量回归(SVR)和径向基(RBF)神经网络导热系数预测模型。结果表明:冻融土导热系数整体均呈粗颗粒土大于细颗粒土特征,且冻土和融土导热系数随土性分布规律存在差异;天然含水率、干密度与导热系数均呈正相关性,不同土类偏相关性结果差异明显,典型土导热系数二元经验回归方程表现为非线性拟合结果。对比三种预测模型下各典型土冻融土导热系数预测结果,全风化千枚岩、角砾及砾砂三种预测模型效果整体较佳,粉土的SVR及RBF神经网络预测精度较好;融土导热系数预测效果整体略优于冻土,SVR及RBF神经网络模型下角砾、粉土及全风化千枚岩融土导热系数预测精度较高。综合导热系数模型预测效果和误差结果分析可得,SVR和RBF神经网络模型预测效果显著优于经验方程拟合,后者针对部分土性拟合效果相对较好,可满足一般工程估算需求;SVR和RBF神经网络预测模型针对不同土性导热系数预测效果呈差异性变化,整体预测效果相当,且预测精度更高、应用土性范围更广。
- 单位