摘要
针对变压器与中压开关柜传统绝缘状态检测方法依赖人工的问题,本文基于可听声声音识别方法,通过将电力设备放电故障声音与正常工况声音、环境噪声进行混叠制作样本集,以模拟真实电力设备运行环境;对故障声音进行预处理后,使用声谱图提取声音的短时频率、能量分布等特征,构建声谱图数据集,结合改进的卷积神经网络实现对放电故障的检测;通过加入注意力机制,调节指数衰减学习率、数据集样本数量、音频采样率等方式进一步提升网络的精度,最终设计的网络模型识别准确率最高可达99.2%,相比其他检测方法优势明显,可实现对放电故障的在线检测。
-
单位泉州维盾电气有限公司; 东华理工大学