摘要
[目的]为了实现对船舶艉轴承润滑状态的监测和评估,提出一种结合润滑性能衰变模型和支持向量机(SVM)算法的艉轴承润滑性能评估方法。[方法]针对船舶艉轴承润滑状态难以监测和识别的问题,建立轴承润滑衰变数值模型,并运用实验数据对该模型进行验证,研究载荷、粗糙度和半径间隙对润滑状态衰变机理的影响。基于SVM算法,构建润滑状态分类器,通过网格搜索算法优化超参数,利用不同润滑状态的数据集进行训练,最后实现对艉轴承润滑状态的评估。[结果]结果显示,随着外部载荷、粗糙度和半径间隙的增大,轴承润滑状态恶化的临界速度增大,动压润滑工作范围减小,混合润滑工作范围增大;由仿真数据集对润滑状态识别模型的验证表明,所提的润滑状态识别方法准确率达96.88%。[结论]所提方法能监测轴承的润滑性能特征,有效识别轴承的润滑状态。
- 单位